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Abstract

Let 9’5{ denote the set of real algebraic polynomialsiafariables and of total degree at maost
For a compact sek c R? set

Pl =suUpck [P
Then the Markov factors oK are defined by
Mu(K) : =max{|DyPlk : P e, |Plg<l wesil).

(Here, as usuak?—1 stands for the Euclidean unit spherd%iﬁ.) Furthermore, given a smooth curve
I' c R4, we denote byD7 P the tangential derivative d? along " (T is the unit tangent td").
Correspondingly, consider the tangential Markov factoF afiven by

M (I'):=maX(|DrPllr: Pe?d, |Plr<i}.
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Letl, : ={(x,x%) : 0<x<1}. We prove that for every irrational number 0 there are constants
A, B > 1 depending only on such that

A<M, () <B"

for every sufficiently large.
Our second result presents some new bounds#ai€2,), where

1
Q,: ={(x,y) eR%: 0<x<1; éx“gygbc“}

(d =2, 0> 1). We show that for every > 1 there exists a constant- 0 depending only on such
that

My (Qy) <n'o9",
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Recent years have seen an increased activity in the study of Markov—Bernstein type
inequalities for the derivatives of multivariate polynomials. These inequalities provide es-
timates on the size of the directional derivatives P of multivariate polynomial® under
some normalization. L@Dﬁ denote the set of real algebraic polynomialsl@friables and
of total degree at most. For a compact se&& ¢ R? set

[Pllk = sup [P (x)].

xekK

Then the Markov factors oK are defined by
M, (K) := maxX{||Dy, Pk : P e, |Pllxk<l oe st

(Here, as usual§?~! stands for the Eucledean unit spherefifi) Furthermore, given a
smooth curvd” ¢ R?, we denote byDy P the tangential derivative d? alongI” (T is the
unit tangent td"). Correspondingly, consider the tangential Markov factoF @fiven by

MI () :=max{||DrP|r: P e2?, |Plr<i).

It was shown by Bos et aJ3] that M (I') is of ordern? whenT is algebraic. In another
paper4] the authors show that for the curve

Iyi={(x,x%): 0<x <1} C R?

with a rational exponent = p/q >1 (p andq are relative primes)M, (I'y) is of precise
ordern?@, while for an irrational exponent > 1, M! (I',) grows faster than any power
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of n. In this paper,we shall generalize the latter statement by showing#hef,) is of
exponential order of magnitude for irrational exponents O.

The Markov factorg, (K ) of a domaink c R¢ have been widely investigated whin
admits a polynomial parametrization (§8¢7,6]) or an analytic parametrization (46¢8]),
that is, points oK can be connected to the interiorkfby polynomial or analytic curves,
respectively. For instance, if

Qy = {(x,y) e R?: 0<x<1; Fx*<y< %)

(d = 2,0 > 1), then it follows from Theorem 2 if6] that for a rational exponent= p/q
(p andq are positive integers) we hav,(2,) = O n?”). The method of analytic (or
polynomial) parametrization does not apply$®g whenao > 1 is irrational. Using a new
approach we shall show below that for irrational exponents1 we have

M,y (Qy) <nc'09"

with some constant > 1 depending only or. The growth of this upper bound is faster
than polynomial growth (which holds for rational exponemtsbut substantially smaller
than exponential growth which will be shown to hold M;,T(Fa) wheno > Oisirrational.

2. New results

Our first result shows that the magnitudedf (I',) is of exponential order when> 0
is irrational.

Theorem 2.1. For every irrational numbew > Othere are constantd, B > 1 depending
only ona such that

A<M (') < B".
By using a different method, is obtained the following local version of Theorem 2.1 in

[9]: for every irrational numbet > 0 there are constants, B > 1 depending only on
such that

A< max{|DrP©,0): Pe#2 |Plr, <1} <B",

whereD7 P (0, 0) is the tangential derivative & alongl’,, at (0, 0). This result was then
built in Theorem 2 of9] where the dependence ans not discussed as explicitly as it is
seen from our demonstrations here.

Our second result presents some new boundsafai2,,).

Theorem 2.2. For everyo > 1there exists a constant> 0 depending only on such that

M, (Qy) <nc'°9",

The question of verifying lower bounds fax, (£2,) faster than polynomial order of
magnitude remains open. (Applying Theorem BBilyields M, (Q,) > cn®*.) In this respect
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we conjecture that for every irrational exponent 1 we have

lim sup IogM—n(Qa) —
n—00 |0g”l

thatis,M,, (L,) increases faster than any poweno©Our next theorem shows that the above
conjecture would provide a best possible lower bound, that is, a stronger lower bound cannot
hold, in general.

Theorem 2.3. Let (5,,) be an arbitrary increasing sequence of positive numbers tending
to co. Then there exists an irrational number> 1 so that

liminf M, (Q,)n P < co.
n—oo

3. Lemmas for Theorem 2.1

Our first lemma is the “Distance Formula” (see part c] of E.2 on p. 17Z]in

Lemma3.1. Lety;, j = 0,1,...,m, and u be distinct real numbers greater th&n%.
Then
m m
- I —
min | x* — bix"i /
b;eC ,Z—f; / 4/1+2 H/l+u,+1
/= L[0.1]

Leto > 1 be an irrational number. For a fixade N letv := v(n) = (n + 1)2 — 1. We
define the numberg < /1 < -+ < 4, by

{20, 22, ..., A} =1{j + ko, j,ke{0,1,...,n}}. (3.1)
Note that/g := 0 and/; := 1. Let M, := span{x°, x*1, ..., x*}. Associated with
0=/lo <1< <4, defined by (3.1), we defing; := 441 -1, =0,1,...,v—1,
where 0= gy < g < --- < u,_;. We also defineM; , := span{xo, x#1, ... xf-1},

Note thatif P € M, ,, thenP’ € M ,.

Lemma 3.2. Leto > 1 beirrational. Then there is a constant > 1 depending only on
such thatifd < é < ¢;", then

IPllou<21Pls, P e M,
To prove Lemma 3.2 we need first the following lemma.

Lemma 3.3. Leta > 2. Then there is an absolute constant 1 such that
a+1

I PlLy01, P e M,
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Proof. Let
P'(0
Al = sup —' O
' pem, IPllLz10.1]
Using Lemma 3.1 Witmzo, Ui ooy U} = {20, A2, 43, ..., Ay} andp = 21 = 1, we obtain
n; + 3
=2 —2 =2
f]nzﬂl f]"[( ) f]"[( )
3 n
=2@H(1+—' V(52 T 5)
i3 j—2 bl koo — 2 j=1 k1 ]+k0(—2
n 3 n 3 n n 3
Zf—exp y — exp(Z —)exp Xy ——
j=3j_2 k=2 ko — 2 j=lk=lj+ka_2
a+1
< n
a—ZC

with a suitable absolute constant- 1. [

Proof of Lemma 3.2.Firstwe assume that> 2. We will use the concept of the Chebyshev
“polynomial” T, _1 for a givenv-dimensional Chebyshev space, see Section 38| ofor
instance. LeT,-1 € M, , be the Chebyshev “polynomial” fa¥/; , on [, 1], wheren €
(0,1) is chosen so thal,_1(0)| = 2. SoT,—1 € M, ITy-1llp.1 = 1, [Ty-1(D)] = 1,
andT7,_1 equioscillates betweenl and 1 or{#, 1] the maximum number of times, that is,
vtimes. Note that 1, . M; ,. By Lemma 3.3 we have

1
ajzcn

ITy_1

with a suitable absolute constant- 1. Observe that 1, x M, , and the fact thaf’,_;
equioscillates offyy, 1] n + 1 times imply thaff,” ; does not vanish of®, #], henceT,_,|
is decreasing ofD, n]. Therefore

a+1 ,
1=1Ty-1(0) — Ty_1(m)| = nIT,;_1(x))| @IITﬁ_l(O)Igna —5C» X€ [0,6]. (3.2)

Now using the fact that the Chebyshev polynontial; € M, , on[y, 1] has the property

Tl oy PO

22 |Ty-1(y)| = =
- ||Tv—l||[l1,l] PeM; , ||P||[11,1]

for every fixedy € [0, 1), we can deduce from (3.2) that

1Pl <21 P10
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for everyP € M/, ,, where

v,

o—2
Cn

>
ﬂ/a+1

This finishes the case when> 2.

We show now that the lemma remains valid forall- 1. To see this we can use the
“Comparison Theorem” formulated by part g] of E.4 on pp. 120-1Z1jnObserve that
if « > 1, then

j+k@+1) = 1< (j +ka—1)
a_

holds for all nonnegative integefsindk. Now lety be chosen fox + 1 > 2 as in the first
part of the proof. Then

7]* — ’,Ioc/(cc—l)

is a suitable choice far > 1. O

Lemma 3.4. Leta > 1 be irrational. Then there is a constant> 1 depending only on
such that

1P lo.11 <"1 Plljo.a

for everyP € M, ,.

Proof. We need to prove that

P <3l Plio.a (3.3)

foreveryP € M, , and for everyy € (0, 1], wherec, > 1is a constant depending only on
o. By Newman’s inequality (see Theorem 6.1.1 on p. 27@]) we have

9 v
PO < = [ D2 25 | IIPlo<9( + 1r(L+ a)cf || Pllo.y
y \i%
< 5 max |P(x)].
\02x€[0’1]| (X)|

for everyP € M, andy € [c]", 1], Wherec; is a constant coming from Lemma 3.2,
andcp > 1 is a suitable constant depending only erSince (3.3) is proved for every
y € [c1", 1], we can apply Lemma 3.2 to see that (3.3) is true foyall [0, 1] with ¢}
replaced by 25. [

Lemma 3.5. Leta > 1 be irrational. Then there is an absolute constant 0 so that for
someP € M, , with || P|[0,1; = 1 we have

cn

o

IP'©)> exp(2).
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Proof. Let

1

min Hxl/z—z;’ 5 ajx’i 1/2H

By’g( -

L[0,1]

where the minimum is taken for all
(az,as, ...,ay) € R" L.

By the “Distance Formula” of Lemma 3.1 we have fop 6

”_fnﬂf“ fn( =)
x/_l_[]_[<1+ )>fexp(22]+ka_l

k=2 j=2 k=2 j

2
> V2 exp((n ~1) (1+ o >>x/§ exp(§>.

Therefore there is a Muntz polynomiadlof the form

v
okx) = x12 4 Z ajx}'f—l/z, aj € R,

j=2
such that
ol ~ exp(—0). (34)
L2[0,1]\\/§ p 3y .

Now let P € M, , be defined by
P(x) = x?0 ).

Using the Nikolskii-type inequality of Theorem 6.1.3 on p. 28]lihand combining it with
(3.4), we obtain thatP’(0)| = 1 and

12
vV
n
1Pl 1< V72 (Z ij) 1101l o101 < en® 2/ exp<—§>
j=1

with an absolute constant> 0. O
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4. Proof of Theorems 2.1-2.3

Proof of Theorem 2.1.The theorem follows immediately from Lemmas 3.4 and 3.5. Ob-
serve that, by symmetry, we may assume thatl. [

Proof of Theorem 2.2.It is well known that for anyn € N there existp,,, ¢, € N with
1<g,, <m and

(4.1)

Setr, = pm/qm- Obviouslyr,, < 2o if mis sufficiently large. In the sequel let be
so large that,, < 2« is satisfied. We shall assume that > o« > 1 (the case;, < «ois
analogous). In addition, set

m:=|6logpn|+1, 8,:=n"" (4.2)
and
Q,5, =1{(x,y) € Qy: 0O<x <0y}

Assume thaf € ,@5 and|| P | g, < 1. First, we consider the simple case whiéh, P o, =
| Dg, P (x0, yo)| With some(xo, yo) € Q, \ @, 5,. Clearly, for(xo, yo) € 2, \ Q, s, there
exist horizontal and vertical segments of length at leastpassing througtixo, yo) and
imbedded intoQ,. If we apply Markov's inequality (see Theorem 5.1.8, p. 2331p
transformed linearly to these line segments, we obtain that

< 5 < expler log” n)

n

oP OP
= (x0, y0)| + | =— (x0, Y0)
Ox Oy

with a suitable positive constant depending only on.
Now we may assume th§iD, P| o, = D, P (xo, Yo), where(xo, yo) € 2, 5,, that is,

0<x0< 8y, 3% <y0<24G.
Consider the curve
(@) = (x,y) 1= (xo + 19", yo + 1Pm) 1 0<t <t = (1 — xg) /).

Clearly,y(0) = (xo, yo). Set

Ei=27 Y@ = 1F ¢ : > 21/, (4.3)

We claim that ift > ¢/n3, theny(r) € Q,. Assume to the contrary that for some- ¢/n®
we havey(t) € Q,, that is, either

yo+ 17" =yo+ (x — x0)™ > 2¢*
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or

1
yo 4+ tPm = yg + (x — x0)™ < Ex“.

Consider the first possibility. Then
2x* < yo+ (x — x0)"" <2x§ + x"" <20;, + x7,
that is,x < 21/%5,,. But then we have

21/0(

t = (x — xg) Y L xMam L xt/m < (Vs \H/m < —

contradicting the choice > ¢/n5.
It remains to consider the case when for same (x — xg)/% > ¢/n® we have

yo + (x — xp)'™ < %x“.

Clearly, using that & ¢ > 3, thatis,¢/(1 - &) > 1, we have

1/qm
Y S S S VSO S VS G
(x — x0) >n3/1—§n3 1—én /1_611 > 1_511
and hence
¢ ¢
—xg>——10,> .
X XO/l—i(S"/l—ixo
This yields that
X
piputo=

Thereforex — xg > &x. Thus, recalling that,, < 2, we have

1
EX“ > yo+ (x —x0)™ > (&x)™,

that is, by (4.3)

1

1 1
T —0k = o=, g2
X <3 g < 3 14 _ﬁ

Using (4.1), we obtain
¥ < (271/2)1/(;","7(;{) < (271/2)mqm’
that is,

t = ()C _ xO)l/‘]m gxl/‘Im < 2—Wl/2<2—3|092n .

119
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which contradicts that > ¢/n% > 1/13. Now we have completed the proof of our claim
thaty(s) € Q, whenever > ¢/n3. Furthermore, for > ¢/n3 we have by (4.2)

C \49m c\m
x=xg+1tI"> (ﬁ) > (ﬁ) = exp(—c2 |0g2 n)

with a constant, depending only om. As it was noted at the beginning of the proof, for
(x,y) € Qy with x > exp(—c2 log? n) we have
oP opP
——(x, V)| + | 5= (. »)| < exples log? n) (4.4)
Ox Oy

with a suitable positive constant depending only or. Consider now, for instance, the
univariate polynomial

oP
G(t) = a (xo0 + 9, yo + tPm).

By (4.4) we have that
G (1)] < exples log? n)

for everyr > ¢/n®. Moreover, by (4.2)
deg(G)< cangyy <canm < csn log n

with suitable positive constantg andcs depending only on. Thus, by the Chebyshev (or
Remez) inequality (sefd, p. 235 (or) 393], for example) we conclude that

G llj0,¢/n3 < €XP(ce log? n),

with a suitable positive constants depending only or. Now we obtain

< explcs 10g? n)

opP ( )
3y X0, Y0

by settingr = 0. We can estimat€d P /0x)(xo, yo) in the same way. The proof of the
theorem is now completed. [

Proof of Theorem 2.3.The proof of this theorem is somewhat similar to that of Theorem
2.2, sowe give only a sketch of the proof. Clearly, given an increasing fungtiortending

to oo asx — oo, there exists an irrational number> 1 such that with some,,, g,, € N,

qgm — 00, we have

1
o<Pm oy = m € N. (4.5)

dm qmP(qm) '
Set

n= LZ(/)(QW)/GJ, 5}1 = n_?’qm' (46)
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Then, as in the proof of Theorem 2.2, it can be shown that wherie\ﬁeﬁ’,zz, IPllg, <1,
and(xg, yo) € 2, with xg>J,, we have

|De P (x0, y0)| <n", we S,

for somec > 0 depending only on.. Now let (xg, yo) € Q. and 0< xp < J,,. Consider the
curve

{p(®) == (xo + 19, yo + t7™m); 0<1 <10},

whererg := (1 — xg)Y/4. Similarly to the proof of Theorem 2.2 it can be shown thai
stays below the curve = 2x* if 2 /n3 <t < 19. Now we prove thap(¢) is located above the
curvey = %x“ whenever > co/n® with a properly chosen absolute constapit- 1. Set

_ Pm
qm.

x:=xo+t";, y:i=yo+1tP";, ry:

Again, using that > ¢o/n° and (4.6), we have
x —xp =19 > con~3 = ¢d, > coxo,
that is,x — xo > &x provided thatg > ¢(1— &)1, & := 271/ Assume now tha(r) is

below the curvey = %x"‘ for somer > co/n2. Then

1
> x> yo+ (x —x0)™ = (x — x0)™ = (Ex)™,

that is, since,, < 2« for sufficiently large values ah, we have
1
7

xr”’_a§ %‘ éir‘” gé 672oc —

Therefore, by (4.5)

1 1/(rim—o) 1 qm P (qm)
x< | — < —= ,
(ﬁ) (ﬁ)

hence using (4.6), we conclude

1

@(gm) 1
tgxl/q»v < (ﬁ) <2_(P(Qm)/2<

rﬁ.
Evidently, this contradicts our choice> c¢o/n3, co > 1. Hencey(t) € Q, whenever
t > co/n3, and similarly to the proof of Theorem 2.2, we obtain that

M, (Qa) <nClQm

with some absolute constant > 0 andn = [2?@»)/®| Note thatp(g,) < c2logn,
where the increasing can be chosen to have arbitrarily fast growtlhxoasx — oo. This
completes the proof of Theorem 2.3.[]
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