
Journal of Approximation Theory 130 (2004) 111–122

www.elsevier.com/locate/jat

Markov-type inequalities on certain irrational arcs
and domains

Tamás Erdélyia,∗,1, András Kroób,2

aDepartment of Mathematics, Texas A&M University, College Station, TX 77843, USA
bMathematical Institute of the Hungarian Academy of Sciences, Realtanoda U. 13-15, Budapest, H-1053,

Hungary

Received 11 November 2003; accepted in revised form 25 June 2004

Communicated by Peter B. Borwein
Available online 25 September 2004

Abstract

Let Pd
n denote the set of real algebraic polynomials ofd variables and of total degree at mostn.

For a compact setK ⊂ Rd set

‖P ‖K = supx∈K |P (x)|.

Then the Markov factors onK are defined by

Mn(K) : = max{‖D�P ‖K : P ∈ Pd
n, ‖P ‖K �1, � ∈ Sd−1}.

(Here, as usual,Sd−1 stands for the Euclidean unit sphere inRd .) Furthermore, given a smooth curve
� ⊂ Rd , we denote byDT P the tangential derivative ofP along� (T is the unit tangent to�).
Correspondingly, consider the tangential Markov factor of� given by

MT
n (�) : = max{‖DT P ‖� : P ∈ Pd

n, ‖P ‖� �1}.
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Let �� : ={(x, x�) : 0�x �1}. We prove that for every irrational number� > 0 there are constants
A, B > 1 depending only on� such that

An �MT
n (��)�Bn

for every sufficiently largen.
Our second result presents some new bounds forMn(��), where

�� : =
{

(x, y) ∈ R2 : 0�x �1; 1

2
x� �y �2x�

}

(d = 2, � > 1). We show that for every� > 1 there exists a constantc > 0 depending only on� such
that

Mn(��)�nc logn.

© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Recent years have seen an increased activity in the study of Markov–Bernstein type
inequalities for the derivatives of multivariate polynomials. These inequalities provide es-
timates on the size of the directional derivativesD�P of multivariate polynomialsP under
some normalization. LetPd

n denote the set of real algebraic polynomials ofd variables and
of total degree at mostn. For a compact setK ⊂ Rd set

‖P ‖K = sup
x∈K

|P (x)|.

Then the Markov factors onK are defined by

Mn(K) := max{‖D�P ‖K : P ∈ Pd
n, ‖P ‖K �1, � ∈ Sd−1}.

(Here, as usual,Sd−1 stands for the Eucledean unit sphere inRd .) Furthermore, given a
smooth curve� ⊂ Rd , we denote byDT P the tangential derivative ofP along� (T is the
unit tangent to�). Correspondingly, consider the tangential Markov factor of� given by

MT
n (�) := max{‖DT P ‖� : P ∈ Pd

n, ‖P ‖��1}.
It was shown by Bos et al.[3] thatMT

n (�) is of ordern2 when� is algebraic. In another
paper[4] the authors show that for the curve

�� := {(x, x�) : 0�x �1} ⊂ R2

with a rational exponent� = p/q �1 (p andq are relative primes),MT
n (��) is of precise

ordern2q , while for an irrational exponent� > 1, MT
n (��) grows faster than any power
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of n. In this paper,we shall generalize the latter statement by showing thatMT
n (��) is of

exponential order of magnitude for irrational exponents� > 0.
The Markov factorsMn(K) of a domainK ⊂ Rd have been widely investigated whenK

admits a polynomial parametrization (see[2,7,6]) or an analytic parametrization (see[5,8]),
that is, points ofK can be connected to the interior ofK by polynomial or analytic curves,
respectively. For instance, if

�� := {(x, y) ∈ R2 : 0�x �1; 1
2 x��y �2x�}

(d = 2, � > 1), then it follows from Theorem 2 in[6] that for a rational exponent� = p/q

(p andq are positive integers) we haveMn(��) = O(n2p). The method of analytic (or
polynomial) parametrization does not apply to�� when� > 1 is irrational. Using a new
approach we shall show below that for irrational exponents� > 1 we have

Mn(��)�nc logn

with some constantc > 1 depending only on�. The growth of this upper bound is faster
than polynomial growth (which holds for rational exponents�), but substantially smaller
than exponential growth which will be shown to hold forMT

n (��) when� > 0 is irrational.

2. New results

Our first result shows that the magnitude ofMT
n (��) is of exponential order when� > 0

is irrational.

Theorem 2.1. For every irrational number� > 0 there are constantsA, B > 1depending
only on� such that

An �MT
n (��)�Bn.

By using a different method, is obtained the following local version of Theorem 2.1 in
[9]: for every irrational number� > 0 there are constantsA, B > 1 depending only on�
such that

An � max
{
|DT P (0, 0)| : P ∈ P2

n, ‖P ‖�� �1
}

�Bn,

whereDT P (0, 0) is the tangential derivative ofP along�� at (0, 0). This result was then
built in Theorem 2 of[9] where the dependence on� is not discussed as explicitly as it is
seen from our demonstrations here.

Our second result presents some new bounds forMn(��).

Theorem 2.2. For every� > 1 there exists a constantc > 0depending only on� such that

Mn(��)�nc logn.

The question of verifying lower bounds forMn(��) faster than polynomial order of
magnitude remains open. (Applying Theorem 2 in[6] yieldsMn(��)�cn2�.) In this respect
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we conjecture that for every irrational exponent� > 1 we have

lim sup
n→∞

logMn(��)

logn
= ∞,

that is,Mn(��) increases faster than any power ofn. Our next theorem shows that the above
conjecture would provide a best possible lower bound, that is, a stronger lower bound cannot
hold, in general.

Theorem 2.3. Let (�n) be an arbitrary increasing sequence of positive numbers tending
to∞. Then there exists an irrational number� > 1 so that

lim inf
n→∞ Mn(��)n−�n < ∞.

3. Lemmas for Theorem 2.1

Our first lemma is the “Distance Formula” (see part c] of E.2 on p. 177 in[1]).

Lemma 3.1. Let �j , j = 0, 1, . . . , m, and� be distinct real numbers greater than−1
2.

Then

min
bj ∈C

∥∥∥∥∥∥x� −
m∑

j=0

bj x�j

∥∥∥∥∥∥
L2[0,1]

= 1√
1 + 2�

m∏
j=0

|� − �j |
� + �j + 1

.

Let � > 1 be an irrational number. For a fixedn ∈ N let � := �(n) = (n + 1)2 − 1. We
define the numbers�0 < �1 < · · · < �� by

{�0, �1, . . . , ��} = {j + k�, j, k ∈ {0, 1, . . . , n}}. (3.1)

Note that�0 := 0 and�1 := 1. Let M�,� := span{x�0, x�1, . . . , x��}. Associated with
0 = �0 < �1 < · · · < �� defined by (3.1), we define�j := �j+1 − 1, j = 0, 1, . . . ,� − 1,
where 0= �0 < �1 < · · · < ��−1. We also defineM ′

�,� := span{x�0, x�1, . . . , x��−1}.
Note that ifP ∈ M�,�, thenP ′ ∈ M ′

�,�.

Lemma 3.2. Let� > 1 be irrational. Then there is a constantc1 > 1 depending only on�
such that if0 < 	 < c−n

1 , then

‖P ‖[0,1]�2‖P ‖[	,1], P ∈ M ′
�,�.

To prove Lemma 3.2 we need first the following lemma.

Lemma 3.3. Let� > 2.Then there is an absolute constantc > 1 such that

|P ′(0)|� � + 1

� − 2
cn‖P ‖L2[0,1], P ∈ M ′

�,�.
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Proof. Let

A′
�,� := sup

P∈M ′
�,�

|P ′(0)|
‖P ‖L2[0,1]

.

Using Lemma 3.1 with{�0, �1, . . . , �m} = {�0, �2, �3, . . . , ��} and� = �1 = 1, we obtain

A′
�,� = 2

√
3

�∏
j=2

�j + 2

�j − 1
= 2

√
3

�∏
j=2

(
1 + 3

�j − 1

)
= 2

√
3

�∏
j=3

(
1 + 3

�j − 2

)

= 2
√

3
n∏

j=3

(
1 + 3

j − 2

) n∏
k=1

(
1 + 3

k� − 2

) n∏
j=1

n∏
k=1

(
1 + 3

j + k� − 2

)

� 2
√

3
� + 1

� − 2
exp


 n∑

j=3

3

j − 2


 exp

(
n∑

k=2

3

k� − 2

)
exp


 n∑

j=1

n∑
k=1

3

j + k� − 2




� � + 1

� − 2
cn

with a suitable absolute constantc > 1. �

Proof of Lemma 3.2.First we assume that� > 2.We will use the concept of the Chebyshev
“polynomial” T�−1 for a given�-dimensional Chebyshev space, see Section 3.3 of[1], for
instance. LetT�−1 ∈ M ′

�,� be the Chebyshev “polynomial” forM ′
�,� on [
, 1], where
 ∈

(0, 1) is chosen so that|T�−1(0)| = 2. SoT�−1 ∈ M ′
�,�, ‖T�−1‖[
,1] = 1, |T�−1(1)| = 1,

andT�−1 equioscillates between−1 and 1 on[
, 1] the maximum number of times, that is,
� times. Note that 1, x∈ M ′

�,�. By Lemma 3.3 we have

|T ′
�−1(0)|� � + 1

� − 2
cn

with a suitable absolute constantc > 1. Observe that 1, x∈ M ′
�,� and the fact thatT�−1

equioscillates on[
, 1] n + 1 times imply thatT ′′
�−1 does not vanish on[0, 
], hence|T ′

�−1|
is decreasing on[0, 
]. Therefore

1 = |T�−1(0) − T�−1(
)| = 
|T ′
�−1(x))|�
|T ′

�−1(0)|�

� + 1

� − 2
cn, x ∈ [0, 	]. (3.2)

Now using the fact that the Chebyshev polynomialT�−1 ∈ M ′
�,� on [
, 1] has the property

2� |T�−1(y)| = |T�−1(y)|
‖T�−1‖[
,1]

= max
P∈M ′

n,�

|P (y)|
‖P ‖[
,1]

for every fixedy ∈ [0, 
), we can deduce from (3.2) that

‖P ‖[0,1]�2‖P ‖[
,1]
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for everyP ∈ M ′
�,�, where


� � − 2

� + 1
c−n.

This finishes the case when� > 2.
We show now that the lemma remains valid for all� > 1. To see this we can use the

“Comparison Theorem” formulated by part g] of E.4 on pp. 120–121 in[1]. Observe that
if � > 1, then

j + k(� + 1) − 1� �
� − 1

(j + k� − 1)

holds for all nonnegative integersj andk. Now let
 be chosen for� + 1 > 2 as in the first
part of the proof. Then


∗ := 
�/(�−1)

is a suitable choice for� > 1. �

Lemma 3.4. Let� > 1 be irrational. Then there is a constantc > 1 depending only on�
such that

‖P ′‖[0,1]�cn‖P ‖[0,1]

for everyP ∈ M�,�.

Proof. We need to prove that

|P ′(y)|�cn
2‖P ‖[0,1] (3.3)

for everyP ∈ M�,� and for everyy ∈ (0, 1], wherec2 > 1 is a constant depending only on
�. By Newman’s inequality (see Theorem 6.1.1 on p. 276 in[1]), we have

|P ′(y)| � 9

y


 �∑

j=0

�j


 ‖P ‖[0,1]�9(n + 1)2n(1 + �)cn

1‖P ‖[0,1]

� cn
2 max

x∈[0,1] |P (x)|.

for everyP ∈ M�,� andy ∈ [c−n
1 , 1], wherec1 is a constant coming from Lemma 3.2,

andc2 > 1 is a suitable constant depending only on�. Since (3.3) is proved for every
y ∈ [c−n

1 , 1], we can apply Lemma 3.2 to see that (3.3) is true for ally ∈ [0, 1] with cn
2

replaced by 2cn
2. �

Lemma 3.5. Let� > 1 be irrational. Then there is an absolute constantc > 0 so that for
someP ∈ M�,� with ‖P ‖[0,1] = 1we have

|P ′(0)|� exp
(cn

�

)
.
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Proof. Let

B�,� = 1

min
∥∥∥x1/2 −∑�

j=2 aj x�j −1/2
∥∥∥

L2[0,1]
,

where the minimum is taken for all

(a2, a3, . . . , a�) ∈ R�−1.

By the “Distance Formula” of Lemma 3.1 we have forn�6

B�,� = √
2

�∏
j=2

�j + 1

�j − 1
= √

2
�∏

j=2

(
1 + 2

�j − 1

)

�
√

2
n∏

k=2

n∏
j=2

(
1 + 2

j + k� − 1

)
�

√
2 exp


 n∑

k=2

n∑
j=2

1

j + k� − 1




�
√

2 exp

(
(n − 1)2

1

(1 + �)n

)
�

√
2 exp

( n

3�

)
.

Therefore there is a Müntz polynomialQ of the form

Q(x) = x1/2 +
�∑

j=2

aj x�j −1/2, aj ∈ R,

such that

‖Q‖L2[0,1]�
1√
2

exp
(
− n

3�

)
. (3.4)

Now letP ∈ M�,� be defined by

P (x) = x1/2Q(x).

Using the Nikolskii-type inequality of Theorem 6.1.3 on p. 281 in[1] and combining it with
(3.4), we obtain that|P ′(0)| = 1 and

‖P ‖[0,1]�
√

72


 �∑

j=1

�j




1/2

‖Q‖L2[0,1]�cn3/2√� exp
(
− n

3�

)

with an absolute constantc > 0. �
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4. Proof of Theorems 2.1–2.3

Proof of Theorem 2.1.The theorem follows immediately from Lemmas 3.4 and 3.5. Ob-
serve that, by symmetry, we may assume that� > 1. �

Proof of Theorem 2.2.It is well known that for anym ∈ N there existpm, qm ∈ N with
1�qm �m and∣∣∣∣� − pm

qm

∣∣∣∣ � 1

mqm

. (4.1)

Set rm := pm/qm. Obviouslyrm < 2� if m is sufficiently large. In the sequel letm be
so large thatrm < 2� is satisfied. We shall assume thatrm > � > 1 (the caserm < � is
analogous). In addition, set

m := �6 log2 n� + 1, 	n := n−3m (4.2)

and

��,	n
:= {(x, y) ∈ �� : 0�x �	n}.

Assume thatP ∈ P2
n and‖P ‖�� �1. First, we consider the simple case when‖D�P ‖�� =

|D�P (x0, y0)| with some(x0, y0) ∈ �� \ ��,	n
. Clearly, for(x0, y0) ∈ �� \ ��,	n

there
exist horizontal and vertical segments of length at leastc 	�

n passing through(x0, y0) and
imbedded into��. If we apply Markov’s inequality (see Theorem 5.1.8, p. 233 in[1])
transformed linearly to these line segments, we obtain that∣∣∣∣�P

�x
(x0, y0)

∣∣∣∣+
∣∣∣∣�P

�y
(x0, y0)

∣∣∣∣ � 4n2

c 	�
n

� exp(c1 log2 n)

with a suitable positive constantc1 depending only on�.
Now we may assume that‖D�P ‖�� = D�P (x0, y0), where(x0, y0) ∈ ��,	n

, that is,

0�x0�	n, 1
2 x�

0 �y0�2x�
0 .

Consider the curve

{�(t) := (x, y) := (x0 + tqm, y0 + tpm) : 0� t � t0 = (1 − x0)1/qm}.
Clearly,�(0) = (x0, y0). Set

� := 2−1/(4�), c := �
1 − �

> 21/�. (4.3)

We claim that ift > c/n3, then�(t) ∈ ��. Assume to the contrary that for somet > c/n3

we have�(t) �∈ ��, that is, either

y0 + tpm = y0 + (x − x0)rm > 2x�
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or

y0 + tpm = y0 + (x − x0)rm <
1

2
x�.

Consider the first possibility. Then

2x� < y0 + (x − x0)rm �2x�
0 + xrm �2	�

n + x�,

that is,x < 21/�	n. But then we have

t = (x − x0)1/qm �x1/qm �x1/m�(21/�	n)1/m� 21/�

n3

contradicting the choicet > c/n3.
It remains to consider the case when for somet = (x − x0)1/qm > c/n3 we have

y0 + (x − x0)rm < 1
2 x�.

Clearly, using that 1> � > 1
2, that is,�/(1 − �) > 1, we have

(x − x0)1/qm >
c

n3 � �
1 − �

1

n3 = �
1 − �

	1/m
n � �

1 − �
	1/qm

n �
(

�
1 − �

	n

)1/qm

and hence

x − x0� �
1 − �

	n � �
1 − �

x0.

This yields that

x � �
1 − �

x0 + x0 = x0

1 − �
.

Thereforex − x0��x. Thus, recalling thatrm < 2�, we have

1

2
x� > y0 + (x − x0)rm > (�x)rm,

that is, by (4.3)

xrm−� <
1

2
�−rm <

1

2
�−2� = 1√

2
.

Using (4.1), we obtain

x < (2−1/2)1/(rm−�) < (2−1/2)mqm,

that is,

t = (x − x0)1/qm �x1/qm < 2−m/2�2−3 log2 n = 1

n3 ,
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which contradicts thatt > c/n3 > 1/n3. Now we have completed the proof of our claim
that�(t) ∈ �� whenevert > c/n3. Furthermore, fort > c/n3 we have by (4.2)

x = x0 + tqm �
( c

n3

)qm �
( c

n3

)m

� exp(−c2 log2 n)

with a constantc2 depending only on�. As it was noted at the beginning of the proof, for
(x, y) ∈ �� with x � exp(−c2 log2 n) we have∣∣∣∣�P

�x
(x, y)

∣∣∣∣+
∣∣∣∣�P

�y
(x, y)

∣∣∣∣ � exp(c3 log2 n) (4.4)

with a suitable positive constantc3 depending only on�. Consider now, for instance, the
univariate polynomial

G(t) := �P

�y
(x0 + tqm, y0 + tpm).

By (4.4) we have that

|G(t)|� exp(c3 log2 n)

for everyt > c/n3. Moreover, by (4.2)

deg(G)�c4nqm �c4nm�c5n log n

with suitable positive constantsc4 andc5 depending only on�. Thus, by the Chebyshev (or
Remez) inequality (see[1, p. 235 (or) 393], for example) we conclude that

‖G‖[0,c/n3] � exp(c6 log2 n),

with a suitable positive constantsc6 depending only on�. Now we obtain∣∣∣∣�P

�y
(x0, y0)

∣∣∣∣ � exp(c6 log2 n)

by settingt = 0. We can estimate(�P/�x)(x0, y0) in the same way. The proof of the
theorem is now completed. �

Proof of Theorem 2.3.The proof of this theorem is somewhat similar to that of Theorem
2.2, so we give only a sketch of the proof. Clearly, given an increasing function(x) tending
to ∞ asx → ∞, there exists an irrational number� > 1 such that with somepm, qm ∈ N,
qm → ∞, we have

0 <
pm

qm

− � <
1

qm(qm)
, m ∈ N. (4.5)

Set

n := �2(qm)/6�, 	n := n−3qm. (4.6)



T. Erdélyi, A. Kroó / Journal of Approximation Theory 130 (2004) 111–122 121

Then, as in the proof of Theorem 2.2, it can be shown that wheneverP ∈ P2
n, ‖P ‖�� �1,

and(x0, y0) ∈ �� with x0�	n we have

|D�P (x0, y0)|�ncqm, � ∈ S1,

for somec > 0 depending only on�. Now let (x0, y0) ∈ �� and 0�x0�	n. Consider the
curve

{�(t) := (x0 + tqm, y0 + tpm); 0� t � t0},
wheret0 := (1 − x0)1/qm . Similarly to the proof of Theorem 2.2 it can be shown that�(t)

stays below the curvey = 2x� if 2/n3� t � t0. Now we prove that�(t) is located above the
curvey = 1

2x� whenevert > c0/n3 with a properly chosen absolute constantc0 > 1. Set

x := x0 + tqm; y := y0 + tpm; rm := pm

qm

.

Again, using thatt > c0/n3 and (4.6), we have

x − x0 = tqm > c0n−3qm = c0	n �c0x0,

that is,x − x0��x provided thatc0 > �(1− �)−1, � := 2−1/(4�). Assume now that�(t) is
below the curvey = 1

2x� for somet > c0/n3. Then

1

2
x� > y0 + (x − x0)rm �(x − x0)rm �(�x)rm,

that is, sincerm < 2� for sufficiently large values ofm, we have

xrm−�� 1

2
�−rm � 1

2
�−2� = 1√

2
.

Therefore, by (4.5)

x �
(

1√
2

)1/(rm−�)

�
(

1√
2

)qm(qm)

,

hence using (4.6), we conclude

t �x1/qm �
(

1√
2

)(qm)

�2−(qm)/2� 1

n3 .

Evidently, this contradicts our choicet > c0/n3, c0 > 1. Hence�(t) ∈ �� whenever
t > c0/n3, and similarly to the proof of Theorem 2.2, we obtain that

Mn(��)�nc1qm

with some absolute constantc1 > 0 andn = �2(qm)/6�. Note that(qm) < c2 logn,
where the increasing can be chosen to have arbitrarily fast growth to∞ asx → ∞. This
completes the proof of Theorem 2.3.�
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