Journal of
Approximation
Theory

Markov-type inequalities on certain irrational arcs and domains

Tamás Erdélyia ${ }^{\text {a,*, }}$, András Kroó ${ }^{\text {b,2 }}$
${ }^{\text {a }}$ Department of Mathematics, Texas A\&M University, College Station, TX 77843, USA
${ }^{\mathrm{b}}$ Mathematical Institute of the Hungarian Academy of Sciences, Realtanoda U. 13-15, Budapest, H-1053, Hungary

Received 11 November 2003; accepted in revised form 25 June 2004
Communicated by Peter B. Borwein
Available online 25 September 2004

Abstract

Let \mathscr{P}_{n}^{d} denote the set of real algebraic polynomials of d variables and of total degree at most n. For a compact set $K \subset \mathbb{R}^{d}$ set

$$
\|P\|_{K}=\sup _{x \in K}|P(x)| .
$$

Then the Markov factors on K are defined by

$$
M_{n}(K):=\max \left\{\left\|D_{\omega} P\right\|_{K}: \quad P \in \mathscr{P}_{n}^{d},\|P\|_{K} \leqslant 1, \omega \in S^{d-1}\right\}
$$

(Here, as usual, S^{d-1} stands for the Euclidean unit sphere in \mathbb{R}^{d}.) Furthermore, given a smooth curve $\Gamma \subset \mathbb{R}^{d}$, we denote by $D_{T} P$ the tangential derivative of P along Γ (T is the unit tangent to Γ). Correspondingly, consider the tangential Markov factor of Γ given by

$$
M_{n}^{T}(\Gamma):=\max \left\{\left\|D_{T} P\right\|_{\Gamma}: P \in \mathscr{P}_{n}^{d},\|P\|_{\Gamma} \leqslant 1\right\} .
$$

[^0]0021-9045/\$ - see front matter © 2004 Elsevier Inc. All rights reserved.
doi:10.1016/j.jat.2004.06.008

Let $\Gamma_{\alpha}:=\left\{\left(x, x^{\alpha}\right): 0 \leqslant x \leqslant 1\right\}$. We prove that for every irrational number $\alpha>0$ there are constants $A, B>1$ depending only on α such that

$$
A^{n} \leqslant M_{n}^{T}\left(\Gamma_{\alpha}\right) \leqslant B^{n}
$$

for every sufficiently large n.
Our second result presents some new bounds for $M_{n}\left(\Omega_{\alpha}\right)$, where

$$
\Omega_{\alpha}:=\left\{(x, y) \in \mathbb{R}^{2}: 0 \leqslant x \leqslant 1 ; \frac{1}{2} x^{\alpha} \leqslant y \leqslant 2 x^{\alpha}\right\}
$$

($d=2, \alpha>1$). We show that for every $\alpha>1$ there exists a constant $c>0$ depending only on α such that

$$
M_{n}\left(\Omega_{\alpha}\right) \leqslant n^{c \log n}
$$

© 2004 Elsevier Inc. All rights reserved.
MSC: 41A17
Keywords: Markov-type inequality; Bernstein-type inequality; Remez-type inequality; Multivariate polynomials

1. Introduction

Recent years have seen an increased activity in the study of Markov-Bernstein type inequalities for the derivatives of multivariate polynomials. These inequalities provide estimates on the size of the directional derivatives $D_{\omega} P$ of multivariate polynomials P under some normalization. Let \mathscr{P}_{n}^{d} denote the set of real algebraic polynomials of d variables and of total degree at most n. For a compact set $K \subset \mathbb{R}^{d}$ set

$$
\|P\|_{K}=\sup _{x \in K}|P(x)|
$$

Then the Markov factors on K are defined by

$$
M_{n}(K):=\max \left\{\left\|D_{\omega} P\right\|_{K}: P \in \mathscr{P}_{n}^{d},\|P\|_{K} \leqslant 1, \omega \in S^{d-1}\right\}
$$

(Here, as usual, S^{d-1} stands for the Eucledean unit sphere in \mathbb{R}^{d}.) Furthermore, given a smooth curve $\Gamma \subset \mathbb{R}^{d}$, we denote by $D_{T} P$ the tangential derivative of P along Γ (T is the unit tangent to Γ). Correspondingly, consider the tangential Markov factor of Γ given by

$$
M_{n}^{T}(\Gamma):=\max \left\{\left\|D_{T} P\right\|_{\Gamma}: P \in \mathscr{P}_{n}^{d},\|P\|_{\Gamma} \leqslant 1\right\}
$$

It was shown by Bos et al. [3] that $M_{n}^{T}(\Gamma)$ is of order n^{2} when Γ is algebraic. In another paper [4] the authors show that for the curve

$$
\Gamma_{\alpha}:=\left\{\left(x, x^{\alpha}\right): 0 \leqslant x \leqslant 1\right\} \subset \mathbb{R}^{2}
$$

with a rational exponent $\alpha=p / q \geqslant 1$ (p and q are relative primes), $M_{n}^{T}\left(\Gamma_{\alpha}\right)$ is of precise order $n^{2 q}$, while for an irrational exponent $\alpha>1, M_{n}^{T}\left(\Gamma_{\alpha}\right)$ grows faster than any power
of n. In this paper, we shall generalize the latter statement by showing that $M_{n}^{T}\left(\Gamma_{\alpha}\right)$ is of exponential order of magnitude for irrational exponents $\alpha>0$.

The Markov factors $M_{n}(K)$ of a domain $K \subset \mathbb{R}^{d}$ have been widely investigated when K admits a polynomial parametrization (see [2,7,6]) or an analytic parametrization (see [5,8]), that is, points of K can be connected to the interior of K by polynomial or analytic curves, respectively. For instance, if

$$
\Omega_{\alpha}:=\left\{(x, y) \in \mathbb{R}^{2}: 0 \leqslant x \leqslant 1 ; \frac{1}{2} x^{\alpha} \leqslant y \leqslant 2 x^{\alpha}\right\}
$$

($d=2, \alpha>1$), then it follows from Theorem 2 in [6] that for a rational exponent $\alpha=p / q$ (p and q are positive integers) we have $M_{n}\left(\Omega_{\alpha}\right)=O\left(n^{2 p}\right)$. The method of analytic (or polynomial) parametrization does not apply to Ω_{α} when $\alpha>1$ is irrational. Using a new approach we shall show below that for irrational exponents $\alpha>1$ we have

$$
M_{n}\left(\Omega_{\alpha}\right) \leqslant n^{c \log n}
$$

with some constant $c>1$ depending only on α. The growth of this upper bound is faster than polynomial growth (which holds for rational exponents α), but substantially smaller than exponential growth which will be shown to hold for $M_{n}^{T}\left(\Gamma_{\alpha}\right)$ when $\alpha>0$ is irrational.

2. New results

Our first result shows that the magnitude of $M_{n}^{T}\left(\Gamma_{\alpha}\right)$ is of exponential order when $\alpha>0$ is irrational.

Theorem 2.1. For every irrational number $\alpha>0$ there are constants $A, B>1$ depending only on α such that

$$
A^{n} \leqslant M_{n}^{T}\left(\Gamma_{\alpha}\right) \leqslant B^{n}
$$

By using a different method, is obtained the following local version of Theorem 2.1 in [9]: for every irrational number $\alpha>0$ there are constants $A, B>1$ depending only on α such that

$$
A^{n} \leqslant \max \left\{\left|D_{T} P(0,0)\right|: P \in \mathscr{P}_{n}^{2},\|P\|_{\Gamma_{\alpha}} \leqslant 1\right\} \leqslant B^{n}
$$

where $D_{T} P(0,0)$ is the tangential derivative of P along Γ_{α} at $(0,0)$. This result was then built in Theorem 2 of [9] where the dependence on α is not discussed as explicitly as it is seen from our demonstrations here.

Our second result presents some new bounds for $M_{n}\left(\Omega_{\alpha}\right)$.
Theorem 2.2. For every $\alpha>1$ there exists a constant $c>0$ depending only on α such that

$$
M_{n}\left(\Omega_{\alpha}\right) \leqslant n^{c \log n} .
$$

The question of verifying lower bounds for $M_{n}\left(\Omega_{\alpha}\right)$ faster than polynomial order of magnitude remains open. (Applying Theorem 2 in [6] yields $M_{n}\left(\Omega_{\alpha}\right) \geqslant c n^{2 \alpha}$.) In this respect
we conjecture that for every irrational exponent $\alpha>1$ we have

$$
\limsup _{n \rightarrow \infty} \frac{\log M_{n}\left(\Omega_{\alpha}\right)}{\log n}=\infty
$$

that is, $M_{n}\left(\Omega_{\alpha}\right)$ increases faster than any power of n. Our next theorem shows that the above conjecture would provide a best possible lower bound, that is, a stronger lower bound cannot hold, in general.

Theorem 2.3. Let $\left(\beta_{n}\right)$ be an arbitrary increasing sequence of positive numbers tending to ∞. Then there exists an irrational number $\alpha>1$ so that

$$
\liminf _{n \rightarrow \infty} M_{n}\left(\Omega_{\alpha}\right) n^{-\beta_{n}}<\infty
$$

3. Lemmas for Theorem 2.1

Our first lemma is the "Distance Formula" (see part c] of E. 2 on p. 177 in [1]).
Lemma 3.1. Let $\mu_{j}, j=0,1, \ldots, m$, and μ be distinct real numbers greater than $-\frac{1}{2}$. Then

$$
\min _{b_{j} \in \mathbb{C}}\left\|x^{\mu}-\sum_{j=0}^{m} b_{j} x^{\mu_{j}}\right\|_{L_{2}[0,1]}=\frac{1}{\sqrt{1+2 \mu}} \prod_{j=0}^{m} \frac{\left|\mu-\mu_{j}\right|}{\mu+\mu_{j}+1} .
$$

Let $\alpha>1$ be an irrational number. For a fixed $n \in \mathbb{N}$ let $v:=v(n)=(n+1)^{2}-1$. We define the numbers $\lambda_{0}<\lambda_{1}<\cdots<\lambda_{v}$ by

$$
\begin{equation*}
\left\{\lambda_{0}, \lambda_{1}, \ldots, \lambda_{v}\right\}=\{j+k \alpha, j, k \in\{0,1, \ldots, n\}\} \tag{3.1}
\end{equation*}
$$

Note that $\lambda_{0}:=0$ and $\lambda_{1}:=1$. Let $M_{v, \alpha}:=\operatorname{span}\left\{x^{\lambda_{0}}, x^{\lambda_{1}}, \ldots, x^{\lambda_{v}}\right\}$. Associated with $0=\lambda_{0}<\lambda_{1}<\cdots<\lambda_{v}$ defined by (3.1), we define $\mu_{j}:=\lambda_{j+1}-1, j=0,1, \ldots, v-1$, where $0=\mu_{0}<\mu_{1}<\cdots<\mu_{v-1}$. We also define $M_{v, \alpha}^{\prime}:=\operatorname{span}\left\{x^{\mu_{0}}, x^{\mu_{1}}, \ldots, x^{\mu_{v-1}}\right\}$. Note that if $P \in M_{v, \alpha}$, then $P^{\prime} \in M_{v, \alpha}^{\prime}$.

Lemma 3.2. Let $\alpha>1$ be irrational. Then there is a constant $c_{1}>1$ depending only on α such that if $0<\delta<c_{1}^{-n}$, then

$$
\|P\|_{[0,1]} \leqslant 2\|P\|_{[\delta, 1]}, \quad P \in M_{v, \alpha}^{\prime}
$$

To prove Lemma 3.2 we need first the following lemma.
Lemma 3.3. Let $\alpha>2$. Then there is an absolute constant $c>1$ such that

$$
\left|P^{\prime}(0)\right| \leqslant \frac{\alpha+1}{\alpha-2} c^{n}\|P\|_{L_{2}[0,1]}, \quad P \in M_{v, \alpha}^{\prime}
$$

Proof. Let

$$
A_{v, \alpha}^{\prime}:=\sup _{P \in M_{v, \alpha}^{\prime}} \frac{\left|P^{\prime}(0)\right|}{\|P\|_{L_{2}[0,1]}}
$$

Using Lemma 3.1 with $\left\{\mu_{0}, \mu_{1}, \ldots, \mu_{m}\right\}=\left\{\lambda_{0}, \lambda_{2}, \lambda_{3}, \ldots, \lambda_{\nu}\right\}$ and $\mu=\lambda_{1}=1$, we obtain

$$
\begin{aligned}
A_{v, \alpha}^{\prime} & =2 \sqrt{3} \prod_{j=2}^{v} \frac{\mu_{j}+2}{\mu_{j}-1}=2 \sqrt{3} \prod_{j=2}^{v}\left(1+\frac{3}{\mu_{j}-1}\right)=2 \sqrt{3} \prod_{j=3}^{v}\left(1+\frac{3}{\lambda_{j}-2}\right) \\
& =2 \sqrt{3} \prod_{j=3}^{n}\left(1+\frac{3}{j-2}\right) \prod_{k=1}^{n}\left(1+\frac{3}{k \alpha-2}\right) \prod_{j=1}^{n} \prod_{k=1}^{n}\left(1+\frac{3}{j+k \alpha-2}\right) \\
& \leqslant 2 \sqrt{3} \frac{\alpha+1}{\alpha-2} \exp \left(\sum_{j=3}^{n} \frac{3}{j-2}\right) \exp \left(\sum_{k=2}^{n} \frac{3}{k \alpha-2}\right) \exp \left(\sum_{j=1}^{n} \sum_{k=1}^{n} \frac{3}{j+k \alpha-2}\right) \\
& \leqslant \frac{\alpha+1}{\alpha-2} c^{n}
\end{aligned}
$$

with a suitable absolute constant $c>1$.

Proof of Lemma 3.2. First we assume that $\alpha>2$. We will use the concept of the Chebyshev "polynomial" T_{v-1} for a given v-dimensional Chebyshev space, see Section 3.3 of [1], for instance. Let $T_{v-1} \in M_{v, \alpha}^{\prime}$ be the Chebyshev "polynomial" for $M_{v, \alpha}^{\prime}$ on $[\eta, 1]$, where $\eta \in$ $(0,1)$ is chosen so that $\left|T_{v-1}(0)\right|=2$. So $T_{v-1} \in M_{v, \alpha}^{\prime},\left\|T_{v-1}\right\|_{[\eta, 1]}^{\prime}=1,\left|T_{v-1}(1)\right|=1$, and T_{v-1} equioscillates between -1 and 1 on $[\eta, 1]$ the maximum number of times, that is, v times. Note that $1, x \in M_{v, \alpha}^{\prime}$. By Lemma 3.3 we have

$$
\left|T_{v-1}^{\prime}(0)\right| \leqslant \frac{\alpha+1}{\alpha-2} c^{n}
$$

with a suitable absolute constant $c>1$. Observe that $1, x \in M_{v, \alpha}^{\prime}$ and the fact that T_{v-1} equioscillates on $[\eta, 1] n+1$ times imply that $T_{v-1}^{\prime \prime}$ does not vanish on $[0, \eta]$, hence $\left|T_{v-1}^{\prime}\right|$ is decreasing on $[0, \eta]$. Therefore

$$
\begin{equation*}
\left.1=\left|T_{v-1}(0)-T_{v-1}(\eta)\right|=\eta \mid T_{v-1}^{\prime}(x)\right)|\leqslant \eta| T_{v-1}^{\prime}(0) \left\lvert\, \leqslant \eta \frac{\alpha+1}{\alpha-2} c^{n}\right., \quad x \in[0, \delta] . \tag{3.2}
\end{equation*}
$$

Now using the fact that the Chebyshev polynomial $T_{v-1} \in M_{v, \alpha}^{\prime}$ on $[\eta, 1]$ has the property

$$
2 \geqslant\left|T_{v-1}(y)\right|=\frac{\left|T_{v-1}(y)\right|}{\left\|T_{v-1}\right\|_{[\eta, 1]}}=\max _{P \in M_{n, \alpha}^{\prime}} \frac{|P(y)|}{\|P\|_{[\eta, 1]}}
$$

for every fixed $y \in[0, \eta$), we can deduce from (3.2) that

$$
\|P\|_{[0,1]} \leqslant 2\|P\|_{[\eta, 1]}
$$

for every $P \in M_{v, \alpha}^{\prime}$, where

$$
\eta \geqslant \frac{\alpha-2}{\alpha+1} c^{-n} .
$$

This finishes the case when $\alpha>2$.
We show now that the lemma remains valid for all $\alpha>1$. To see this we can use the "Comparison Theorem" formulated by part g] of E. 4 on pp. 120-121 in [1]. Observe that if $\alpha>1$, then

$$
j+k(\alpha+1)-1 \leqslant \frac{\alpha}{\alpha-1}(j+k \alpha-1)
$$

holds for all nonnegative integers j and k. Now let η be chosen for $\alpha+1>2$ as in the first part of the proof. Then

$$
\eta^{*}:=\eta^{\alpha /(\alpha-1)}
$$

is a suitable choice for $\alpha>1$.

Lemma 3.4. Let $\alpha>1$ be irrational. Then there is a constant $c>1$ depending only on α such that

$$
\left\|P^{\prime}\right\|_{[0,1]} \leqslant c^{n}\|P\|_{[0,1]}
$$

for every $P \in M_{v, \alpha}$.

Proof. We need to prove that

$$
\begin{equation*}
\left|P^{\prime}(y)\right| \leqslant c_{2}^{n}\|P\|_{[0,1]} \tag{3.3}
\end{equation*}
$$

for every $P \in M_{v, \alpha}$ and for every $y \in(0,1]$, where $c_{2}>1$ is a constant depending only on α. By Newman's inequality (see Theorem 6.1.1 on p. 276 in [1]), we have

$$
\begin{aligned}
\left|P^{\prime}(y)\right| & \leqslant \frac{9}{y}\left(\sum_{j=0}^{v} \lambda_{j}\right)\|P\|_{[0,1]} \leqslant 9(n+1)^{2} n(1+\alpha) c_{1}^{n}\|P\|_{[0,1]} \\
& \leqslant c_{2}^{n} \max _{x \in[0,1]}|P(x)| .
\end{aligned}
$$

for every $P \in M_{v, \alpha}$ and $y \in\left[c_{1}^{-n}, 1\right]$, where c_{1} is a constant coming from Lemma 3.2, and $c_{2}>1$ is a suitable constant depending only on α. Since (3.3) is proved for every $y \in\left[c_{1}^{-n}, 1\right]$, we can apply Lemma 3.2 to see that (3.3) is true for all $y \in[0,1]$ with c_{2}^{n} replaced by $2 c_{2}^{n}$.

Lemma 3.5. Let $\alpha>1$ be irrational. Then there is an absolute constant $c>0$ so that for some $P \in M_{v, \alpha}$ with $\|P\|_{[0,1]}=1$ we have

$$
\left|P^{\prime}(0)\right| \geqslant \exp \left(\frac{c n}{\alpha}\right)
$$

Proof. Let

$$
B_{v, \alpha}=\frac{1}{\min \left\|x^{1 / 2}-\sum_{j=2}^{v} a_{j} x^{\lambda_{j}-1 / 2}\right\|_{L_{2}[0,1]}}
$$

where the minimum is taken for all

$$
\left(a_{2}, a_{3}, \ldots, a_{v}\right) \in \mathbb{R}^{v-1}
$$

By the "Distance Formula" of Lemma 3.1 we have for $n \geqslant 6$

$$
\begin{aligned}
B_{v, \alpha} & =\sqrt{2} \prod_{j=2}^{v} \frac{\lambda_{j}+1}{\lambda_{j}-1}=\sqrt{2} \prod_{j=2}^{v}\left(1+\frac{2}{\lambda_{j}-1}\right) \\
& \geqslant \sqrt{2} \prod_{k=2}^{n} \prod_{j=2}^{n}\left(1+\frac{2}{j+k \alpha-1}\right) \geqslant \sqrt{2} \exp \left(\sum_{k=2}^{n} \sum_{j=2}^{n} \frac{1}{j+k \alpha-1}\right) \\
& \geqslant \sqrt{2} \exp \left((n-1)^{2} \frac{1}{(1+\alpha) n}\right) \geqslant \sqrt{2} \exp \left(\frac{n}{3 \alpha}\right)
\end{aligned}
$$

Therefore there is a Müntz polynomial Q of the form

$$
Q(x)=x^{1 / 2}+\sum_{j=2}^{v} a_{j} x^{\lambda_{j}-1 / 2}, \quad a_{j} \in \mathbb{R}
$$

such that

$$
\begin{equation*}
\|Q\|_{L_{2}[0,1]} \leqslant \frac{1}{\sqrt{2}} \exp \left(-\frac{n}{3 \alpha}\right) \tag{3.4}
\end{equation*}
$$

Now let $P \in M_{v, \alpha}$ be defined by

$$
P(x)=x^{1 / 2} Q(x)
$$

Using the Nikolskii-type inequality of Theorem 6.1.3 on p. 281 in [1] and combining it with (3.4), we obtain that $\left|P^{\prime}(0)\right|=1$ and

$$
\|P\|_{[0,1]} \leqslant \sqrt{72}\left(\sum_{j=1}^{v} \lambda_{j}\right)^{1 / 2}\|Q\|_{L_{2}[0,1]} \leqslant c n^{3 / 2} \sqrt{\alpha} \exp \left(-\frac{n}{3 \alpha}\right)
$$

with an absolute constant $c>0$.

4. Proof of Theorems 2.1-2.3

Proof of Theorem 2.1. The theorem follows immediately from Lemmas 3.4 and 3.5. Observe that, by symmetry, we may assume that $\alpha>1$.

Proof of Theorem 2.2. It is well known that for any $m \in \mathbb{N}$ there exist $p_{m}, q_{m} \in \mathbb{N}$ with $1 \leqslant q_{m} \leqslant m$ and

$$
\begin{equation*}
\left|\alpha-\frac{p_{m}}{q_{m}}\right| \leqslant \frac{1}{m q_{m}} . \tag{4.1}
\end{equation*}
$$

Set $r_{m}:=p_{m} / q_{m}$. Obviously $r_{m}<2 \alpha$ if m is sufficiently large. In the sequel let m be so large that $r_{m}<2 \alpha$ is satisfied. We shall assume that $r_{m}>\alpha>1$ (the case $r_{m}<\alpha$ is analogous). In addition, set

$$
\begin{equation*}
m:=\left\lfloor 6 \log _{2} n\right\rfloor+1, \quad \delta_{n}:=n^{-3 m} \tag{4.2}
\end{equation*}
$$

and

$$
\Omega_{\alpha, \delta_{n}}:=\left\{(x, y) \in \Omega_{\alpha}: 0 \leqslant x \leqslant \delta_{n}\right\} .
$$

Assume that $P \in \mathscr{P}_{n}^{2}$ and $\|P\|_{\Omega_{\alpha}} \leqslant 1$. First, we consider the simple case when $\left\|D_{\omega} P\right\|_{\Omega_{\alpha}}=$ $\left|D_{\omega} P\left(x_{0}, y_{0}\right)\right|$ with some $\left(x_{0}, y_{0}\right) \in \Omega_{\alpha} \backslash \Omega_{\alpha, \delta_{n}}$. Clearly, for $\left(x_{0}, y_{0}\right) \in \Omega_{\alpha} \backslash \Omega_{\alpha, \delta_{n}}$ there exist horizontal and vertical segments of length at least $c \delta_{n}^{\alpha}$ passing through (x_{0}, y_{0}) and imbedded into Ω_{α}. If we apply Markov's inequality (see Theorem 5.1.8, p. 233 in [1]) transformed linearly to these line segments, we obtain that

$$
\left|\frac{\partial P}{\partial x}\left(x_{0}, y_{0}\right)\right|+\left|\frac{\partial P}{\partial y}\left(x_{0}, y_{0}\right)\right| \leqslant \frac{4 n^{2}}{c \delta_{n}^{\alpha}} \leqslant \exp \left(c_{1} \log ^{2} n\right)
$$

with a suitable positive constant c_{1} depending only on α.
Now we may assume that $\left\|D_{\omega} P\right\|_{\Omega_{\alpha}}=D_{\omega} P\left(x_{0}, y_{0}\right)$, where $\left(x_{0}, y_{0}\right) \in \Omega_{\alpha, \delta_{n}}$, that is,

$$
0 \leqslant x_{0} \leqslant \delta_{n}, \quad \frac{1}{2} x_{0}^{\alpha} \leqslant y_{0} \leqslant 2 x_{0}^{\alpha} .
$$

Consider the curve

$$
\left\{\gamma(t):=(x, y):=\left(x_{0}+t^{q_{m}}, y_{0}+t^{p_{m}}\right): 0 \leqslant t \leqslant t_{0}=\left(1-x_{0}\right)^{1 / q_{m}}\right\}
$$

Clearly, $\gamma(0)=\left(x_{0}, y_{0}\right)$. Set

$$
\begin{equation*}
\xi:=2^{-1 /(4 \alpha)}, \quad c:=\frac{\xi}{1-\xi}>2^{1 / \alpha} \tag{4.3}
\end{equation*}
$$

We claim that if $t>c / n^{3}$, then $\gamma(t) \in \Omega_{\alpha}$. Assume to the contrary that for some $t>c / n^{3}$ we have $\gamma(t) \notin \Omega_{\alpha}$, that is, either

$$
y_{0}+t^{p_{m}}=y_{0}+\left(x-x_{0}\right)^{r_{m}}>2 x^{\alpha}
$$

or

$$
y_{0}+t^{p_{m}}=y_{0}+\left(x-x_{0}\right)^{r_{m}}<\frac{1}{2} x^{\alpha} .
$$

Consider the first possibility. Then

$$
2 x^{\alpha}<y_{0}+\left(x-x_{0}\right)^{r_{m}} \leqslant 2 x_{0}^{\alpha}+x^{r_{m}} \leqslant 2 \delta_{n}^{\alpha}+x^{\alpha}
$$

that is, $x<2^{1 / \alpha} \delta_{n}$. But then we have

$$
t=\left(x-x_{0}\right)^{1 / q_{m}} \leqslant x^{1 / q_{m}} \leqslant x^{1 / m} \leqslant\left(2^{1 / \alpha} \delta_{n}\right)^{1 / m} \leqslant \frac{2^{1 / \alpha}}{n^{3}}
$$

contradicting the choice $t>c / n^{3}$.
It remains to consider the case when for some $t=\left(x-x_{0}\right)^{1 / q_{m}}>c / n^{3}$ we have

$$
y_{0}+\left(x-x_{0}\right)^{r_{m}}<\frac{1}{2} x^{\alpha} .
$$

Clearly, using that $1>\xi>\frac{1}{2}$, that is, $\xi /(1-\xi)>1$, we have

$$
\left(x-x_{0}\right)^{1 / q_{m}}>\frac{c}{n^{3}} \geqslant \frac{\xi}{1-\xi} \frac{1}{n^{3}}=\frac{\xi}{1-\xi} \delta_{n}^{1 / m} \geqslant \frac{\xi}{1-\xi} \delta_{n}^{1 / q_{m}} \geqslant\left(\frac{\xi}{1-\xi} \delta_{n}\right)^{1 / q_{m}}
$$

and hence

$$
x-x_{0} \geqslant \frac{\xi}{1-\xi} \delta_{n} \geqslant \frac{\xi}{1-\xi} x_{0} .
$$

This yields that

$$
x \geqslant \frac{\xi}{1-\xi} x_{0}+x_{0}=\frac{x_{0}}{1-\xi} .
$$

Therefore $x-x_{0} \geqslant \xi x$. Thus, recalling that $r_{m}<2 \alpha$, we have

$$
\frac{1}{2} x^{\alpha}>y_{0}+\left(x-x_{0}\right)^{r_{m}}>(\xi x)^{r_{m}}
$$

that is, by (4.3)

$$
x^{r_{m}-\alpha}<\frac{1}{2} \xi^{-r_{m}}<\frac{1}{2} \xi^{-2 \alpha}=\frac{1}{\sqrt{2}} .
$$

Using (4.1), we obtain

$$
x<\left(2^{-1 / 2}\right)^{1 /\left(r_{m}-\alpha\right)}<\left(2^{-1 / 2}\right)^{m q_{m}},
$$

that is,

$$
t=\left(x-x_{0}\right)^{1 / q_{m}} \leqslant x^{1 / q_{m}}<2^{-m / 2} \leqslant 2^{-3 \log _{2} n}=\frac{1}{n^{3}}
$$

which contradicts that $t>c / n^{3}>1 / n^{3}$. Now we have completed the proof of our claim that $\gamma(t) \in \Omega_{\alpha}$ whenever $t>c / n^{3}$. Furthermore, for $t>c / n^{3}$ we have by (4.2)

$$
x=x_{0}+t^{q_{m}} \geqslant\left(\frac{c}{n^{3}}\right)^{q_{m}} \geqslant\left(\frac{c}{n^{3}}\right)^{m} \geqslant \exp \left(-c_{2} \log ^{2} n\right)
$$

with a constant c_{2} depending only on α. As it was noted at the beginning of the proof, for $(x, y) \in \Omega_{\alpha}$ with $x \geqslant \exp \left(-c_{2} \log ^{2} n\right)$ we have

$$
\begin{equation*}
\left|\frac{\partial P}{\partial x}(x, y)\right|+\left|\frac{\partial P}{\partial y}(x, y)\right| \leqslant \exp \left(c_{3} \log ^{2} n\right) \tag{4.4}
\end{equation*}
$$

with a suitable positive constant c_{3} depending only on α. Consider now, for instance, the univariate polynomial

$$
G(t):=\frac{\partial P}{\partial y}\left(x_{0}+t^{q_{m}}, y_{0}+t^{p_{m}}\right)
$$

By (4.4) we have that

$$
|G(t)| \leqslant \exp \left(c_{3} \log ^{2} n\right)
$$

for every $t>c / n^{3}$. Moreover, by (4.2)

$$
\operatorname{deg}(G) \leqslant c_{4} n q_{m} \leqslant c_{4} n m \leqslant c_{5} n \log n
$$

with suitable positive constants c_{4} and c_{5} depending only on α. Thus, by the Chebyshev (or Remez) inequality (see [1, p. 235 (or) 393], for example) we conclude that

$$
\|G\|_{\left[0, c / n^{3}\right]} \leqslant \exp \left(c_{6} \log ^{2} n\right)
$$

with a suitable positive constants c_{6} depending only on α. Now we obtain

$$
\left|\frac{\partial P}{\partial y}\left(x_{0}, y_{0}\right)\right| \leqslant \exp \left(c_{6} \log ^{2} n\right)
$$

by setting $t=0$. We can estimate $(\partial P / \partial x)\left(x_{0}, y_{0}\right)$ in the same way. The proof of the theorem is now completed.

Proof of Theorem 2.3. The proof of this theorem is somewhat similar to that of Theorem 2.2 , so we give only a sketch of the proof. Clearly, given an increasing function $\varphi(x)$ tending to ∞ as $x \rightarrow \infty$, there exists an irrational number $\alpha>1$ such that with some $p_{m}, q_{m} \in \mathbb{N}$, $q_{m} \rightarrow \infty$, we have

$$
\begin{equation*}
0<\frac{p_{m}}{q_{m}}-\alpha<\frac{1}{q_{m} \varphi\left(q_{m}\right)}, \quad m \in \mathbb{N} \tag{4.5}
\end{equation*}
$$

Set

$$
\begin{equation*}
n:=\left\lfloor 2^{\varphi\left(q_{m}\right) / 6}\right\rfloor, \quad \delta_{n}:=n^{-3 q_{m}} . \tag{4.6}
\end{equation*}
$$

Then, as in the proof of Theorem 2.2, it can be shown that whenever $P \in \mathscr{P}_{n}^{2},\|P\|_{\Omega_{\alpha}} \leqslant 1$, and $\left(x_{0}, y_{0}\right) \in \Omega_{\alpha}$ with $x_{0} \geqslant \delta_{n}$ we have

$$
\left|D_{\omega} P\left(x_{0}, y_{0}\right)\right| \leqslant n^{c q_{m}}, \quad \omega \in S^{1}
$$

for some $c>0$ depending only on α. Now let $\left(x_{0}, y_{0}\right) \in \Omega_{\alpha}$ and $0 \leqslant x_{0} \leqslant \delta_{n}$. Consider the curve

$$
\left\{\gamma(t):=\left(x_{0}+t^{q_{m}}, y_{0}+t^{p_{m}}\right) ; 0 \leqslant t \leqslant t_{0}\right\},
$$

where $t_{0}:=\left(1-x_{0}\right)^{1 / q_{m}}$. Similarly to the proof of Theorem 2.2 it can be shown that $\gamma(t)$ stays below the curve $y=2 x^{\alpha}$ if $2 / n^{3} \leqslant t \leqslant t_{0}$. Now we prove that $\gamma(t)$ is located above the curve $y=\frac{1}{2} x^{\alpha}$ whenever $t>c_{0} / n^{3}$ with a properly chosen absolute constant $c_{0}>1$. Set

$$
x:=x_{0}+t^{q_{m}} ; \quad y:=y_{0}+t^{p_{m}} ; \quad r_{m}:=\frac{p_{m}}{q_{m}} .
$$

Again, using that $t>c_{0} / n^{3}$ and (4.6), we have

$$
x-x_{0}=t^{q_{m}}>c_{0} n^{-3 q_{m}}=c_{0} \delta_{n} \geqslant c_{0} x_{0}
$$

that is, $x-x_{0} \geqslant \xi x$ provided that $c_{0}>\xi(1-\xi)^{-1}, \xi:=2^{-1 /(4 \alpha)}$. Assume now that $\gamma(t)$ is below the curve $y=\frac{1}{2} x^{\alpha}$ for some $t>c_{0} / n^{3}$. Then

$$
\frac{1}{2} x^{\alpha}>y_{0}+\left(x-x_{0}\right)^{r_{m}} \geqslant\left(x-x_{0}\right)^{r_{m}} \geqslant(\xi x)^{r_{m}}
$$

that is, since $r_{m}<2 \alpha$ for sufficiently large values of m, we have

$$
x^{r_{m}-\alpha} \leqslant \frac{1}{2} \xi^{-r_{m}} \leqslant \frac{1}{2} \xi^{-2 \alpha}=\frac{1}{\sqrt{2}} .
$$

Therefore, by (4.5)

$$
x \leqslant\left(\frac{1}{\sqrt{2}}\right)^{1 /\left(r_{m}-\alpha\right)} \leqslant\left(\frac{1}{\sqrt{2}}\right)^{q_{m} \varphi\left(q_{m}\right)}
$$

hence using (4.6), we conclude

$$
t \leqslant x^{1 / q_{m}} \leqslant\left(\frac{1}{\sqrt{2}}\right)^{\varphi\left(q_{m}\right)} \leqslant 2^{-\varphi\left(q_{m}\right) / 2} \leqslant \frac{1}{n^{3}} .
$$

Evidently, this contradicts our choice $t>c_{0} / n^{3}, c_{0}>1$. Hence $\gamma(t) \in \Omega_{\alpha}$ whenever $t>c_{0} / n^{3}$, and similarly to the proof of Theorem 2.2, we obtain that

$$
M_{n}\left(\Omega_{\alpha}\right) \leqslant n^{c_{1} q_{m}}
$$

with some absolute constant $c_{1}>0$ and $n=\left\lfloor 2^{\varphi\left(q_{m}\right) / 6}\right\rfloor$. Note that $\varphi\left(q_{m}\right)<c_{2} \log n$, where the increasing φ can be chosen to have arbitrarily fast growth to ∞ as $x \rightarrow \infty$. This completes the proof of Theorem 2.3.

References

[1] P. Borwein, T. Erdélyi, Polynomials and Polynomial Inequalities, Springer, New York, 1995.
[2] M. Baran, Markov inequality on sets with polynomial parametrization, Ann. Polon. Math. 60 (1994) 60-79.
[3] L. Bos, N. Levenberg, P.D. Milman, B.A. Taylor, Tangential Markov inequalities characterize algebraic submanifolds of \mathbb{R}^{n}, Indiana Univ. Math. J. 44 (1995) 115-138.
[4] L. Bos, N. Levenberg, P.D. Milman, B.A. Taylor, Tangential Markov inequalities on real algebraic varieties, Indiana Univ. Math. J. 47 (1998) 1257-1271.
[5] A. Kroó, Extremal properties of multivariate polynomials on sets with analytic parametrization, East J. Approx. 7 (2001) 27-40.
[6] A. Kroó, J. Szabados, Markov-Bernstein type inequalities for multivariate polynomials on sets with cusps, J. Approx. Theory 102 (2000) 72-95.
[7] W. Pawlucky, W. Plesniak, Markov's inequality and C^{∞} functions on sets with polynomial cusps, Math. Ann. 275 (1986) 467-480.
[8] V. Totik, On Markoff inequality, Constr. Approx. 18 (3) (2002) 427-441.
[9] L.P. Bos, A. Brudnyi, N. Levenberg, V. Totik, Tangential Markov inequalities on transcendental curves, Constr. Approx. 19 (3) (2003) 339-354.

[^0]: * Corresponding author. Fax: 409 845-6028

 E-mail addresses: tamas.erdelyi@math.tamu.edu (T. Erdélyi), kroo@renyi.hu (A. Kroó).
 ${ }^{1}$ Research of Tamás Erdélyi supported in part by the NSF of the USA under Grant No. DMS-9623156.
 ${ }^{2}$ András Kroó supported by the Hungarian National Foundation for Scientific Research under Grant No. T034531.

